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Abstract. We calculated transport coefficients in thin films in which the particle wavelength
is comparable to the thickness of the film, and the motion across the film is quantized. The
perturbative calculations are analytical almost to the very end, and result in explicit transparent
expressions for the transport coefficients via the correlation function of surface inhomogeneities,
density of particles, and film thickness. The final results are given for Gaussian correlations of
the surface inhomogeneities. The discrete nature of the spectrum leads to a non-analyticity of
transport coefficients as a function of particle density and film thickness, especially for degenerate
fermions. Surface inhomogeneity causes both in-band scattering and interband transitions; the
role of interband transitions is determined by the correlation radius of surface inhomogeneities.
The shape of the curves for the dependence of transport coefficients on the number of particles
and film thickness is determined by the correlation of surface inhomogeneities and is not very
sensitive to their amplitude. For short-range correlations, the interband transitions lead to a
saw-like shape of the curves. With an increasing correlation radius, the interband transitions
become suppressed, and the saw teeth gradually decrease, reducing, in the end, to small kinks
on otherwise monotonic curves. Careful analysis of the transition from quantum to semiclassical
and classical regimes allowed us to improve the accuracy of our previous classical calculations.

1. Introduction

Repeated collisions of ballistic particles with rough walls with random inhomogeneities
restrict particle motion along the walls, and are responsible for the formation of the mean
free path, quantum interference effects, and localization. Scattering of particles and waves
by random rough walls is an old and thoroughly studied problem (see books [1–7]).
However, most of the existingtransport calculations for the wall-imposed limitations on
the transport coefficients and mean free path along the walls involve either oversimplified
models or complicated integro-differential boundary conditions (see, e.g., reviews [8, 9]
and references therein). The lack of simple expressions for the transport coefficients via
statistical characteristics of surface inhomogeneities hinders experimental and theoretical
work on systems with long free paths.

Recently we suggested a simple perturbative description of ballistic transport in systems
with random rough walls [10] (see also [11]). We expressed transport and localization
parameters such as mobility, diffusion, mean free path, localization length, etc, for
ballistic particles directly via the wall profile, namely, via the correlation function of wall
inhomogeneities. Despite intensive previous work on transport in thin films and channels
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with rough walls and a large amount of available data, our transparent semi-analytical results
provide a new explicit link between the transport coefficients and the correlation function
of surface inhomogeneities (for the latest experimental and theoretical results on transport
see references [10, 12–15] and references therein).

Our calculations were based on a canonical coordinate transformation, similar to the
Migdal transformation in nuclear physics, which makes the rough boundaries flat, but
complicates the bulk equations. This idea was proposed earlier in references [16, 17],
but was not carried out explicitly. We used an explicit expression for the coordinate
transformation with the parameters given by the exact profile of the random boundaries.
This provides an exact reformulation of the transport problem with random rough walls as
a transport problem with flat walls and randomly distorted bulk. The bulk problem arising
can be solved using the standard semiclassical perturbative transport equation.

The idea of reducing a surface scattering problem to a bulk one has been used
successfully in other fields, including the electromagnetic and acoustic wave scattering,
diffraction patterns, wave guides, etc, for several decades (see, e.g., [2, 6, 18–25] and
references therein). Generally speaking, such a reduction, either in the form of direct
coordinate transformation or as an expansion in initial boundary conditions, is inherent to
perturbative calculations for small roughness.

Our procedure is the first explicit application of such a technique developed specifically
for ballistic transport in thin films and narrow channels. The calculations are analytical
almost to the very end. The transparent results express transport coefficients directly
via the correlation functions of surface inhomogeneities, and can be used for analysis of
experimental data or as a basis for further calculations. Apart from the transport coefficients,
such as those of mobility and diffusion in different physical systems, the method provides a
simple tool for the study of wall-induced localization and quantum interference effects thus
supplementing the localization results of references [21, 25–27, 14]. Since we are interested
in slight roughness, the calculation of the ‘classical’ mean free path should precede and
serve as a basis for the calculation of the (small) quantum interference effects and (weak)
localization with (exponentially) large localization length. (In the case of strong roughness,
thetransportproblem is simple: the mean free path becomes equal to the film thickness with
the obvious consequences for transport coefficients. Other problems for strong roughness,
such as quantum interference effects or wave patterns for wave scattering, remain non-
trivial.)

In this paper we study ballistic transport in very thin films with quantized motion of
particles across the film,px ∼ jh̄/L (L is the average distance between the walls,j is the
quantum number). The quantization is important for electron transport in ultra-thin pure
metal films and for microflows and microdevices (see reference [28] and references therein).
In thin films with discrete levels for motion across the film, the change in particle density
N and/or film thicknessL causes the redistribution of particles between these levels. In
Fermi systems atT → 0 this is a non-analytical step-like process which should lead to
singularities in the dependence of the transport coefficients on the density of particles or
film thickness. The density dependence of the transport coefficients should become more
and more smooth with increasing temperature even for a distinctly discrete energy spectrum.

Similar singularities in transport in ultra-thin films have already been described for
scattering on bulk impurities [29], and have been qualitatively suggested in reference [17]
for scattering by rough walls. (Note, that this saw-like effect is a purely ‘classical’ transport
result that has nothing in common with 1D quantization of conductance for an effectively
1D motion of particles through a narrow contact [14, 27].) Recent perturbative approach to
a similar problem [15] included bulk attenuation, but disregarded the role of the correlation
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radiusR and missed the operatorx̂p̂x in the perturbation (this operator is inherent to such
problems [16] and is responsible for interlevel transitions). As we will see, the value of
the correlation radiusR and the interlevel transitions define the shape of the dependence of
transport coefficients on film thickness and/or particle density.

In the next section we present general perturbative equations for quantized transport in
thin films with rough boundaries. In section 3 we study transport singularities for degenerate
fermions atT = 0. In section 4 we analyse transport at finite temperature, and calculate the
transport coefficients in the Boltzmann temperature range. The results ensure a consistent
transition from discrete to continuous expressions, and improve the accuracy of our previous
calculations [10] for the continuous spectrum in the classical and semiclassical limits. The
improved results for classical transport are given in the appendix. The final results are
presented for the Gaussian correlation of the surface inhomogeneities; similar calculations
can also be done for other types of correlation function.

2. Transport of particles with quantized motion across the channels

We will consider a film (channel) of the average thicknessL with rough boundaries
x = L/2 − ξ1(y, z) and x = −L/2 + ξ2(y, z). The small boundary inhomogeneities,
ξ1(y, z), ξ2(y, z) � L, are random functions of coordinatess = (y, z) along the bound-
aries,〈ξ1〉 = 〈ξ2〉 = 0. The correlation function〈ξi(s1)ξk(s2)〉 depends only on the distance
between points|s1− s2| and not on the coordinates themselves:

ζik(|s1− s2|) = 〈ξi(s1)ξk(s2)〉 ζik(q) =
∫

d2s eiq·s/h̄ζik(s). (1)

Our approach is based on the canonical coordinate transformationr→ R, p→ P ,

X = L[x − (ξ2(y, z)− ξ1(y, z))/2]

L− (ξ1(y, z)+ ξ2(y, z))
Y = y Z = z (2)

which makes the walls flat,X = ±L/2, and is responsible for the following change in the
form of the bulk HamiltonianĤ = p2/2m:

Ĥ = P̂ 2

2m
+ V̂x + V̂y + V̂z, V̂x = ξ

mL
P̂ 2
x

V̂y = X

2mL

[
ξ ′yP̂xP̂y + P̂xξ ′yP̂z

]
− 1

4m

[
(ξ ′2y − ξ ′1y)P̂xP̂y + P̂x(ξ ′2y − ξ ′1y)P̂z

] (3)

where ξ = ξ1 + ξ2 and V̂z is similar to V̂y ; see [10] for details. The randomness of
inhomogeneities,〈ξ1,2〉 = 0, leads to the randomness of the bulk distortionV̂ , 〈V̂ 〉 = 0.
Thus, the transformation (2) reduces the transport problem between rough walls to an
equivalent transport problem with ideal specular walls,9(L/2) = 9(−L/2) = 0, and a
distorted bulk Hamiltonian (3). The latter problem can be treated in the same standard
perturbative way as any random bulk imperfections or impurities.

The perturbative approach to surface roughness requires that the surface inhomogeneities
should be relatively smooth with the amplitude` smaller than their correlation radiusR and
the thickness of the filmL, ` � L,R. The use of a semiclassical transport equation for
the motion along the film imposes an additional condition on the wavelength, namely, that
the wall-induced distorting force does not change the energy along the wall on the scale
1/q (q is the characteristic wave vector for particle motion along the walls). In the case
of not very high quantum numbersj for the motion across the film, this means that either
`/L � q2R2, q3RL2 or 1 � qR; if both inequalities are broken, one should substitute
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the exact quantum commutator for the Poisson bracket in the transport equation. These
conditions have different meanings for thin films with microscopic roughness,R � L, and
for smooth films that are irregularly curved on a macroscopic scale,R � L. When, as
is often the case, the wave vector along the filmq is of the same order as for the motion
across the film,q ∼ 1/L, the applicability of our perturbative semiclassical approach
requires`� L,R,R2/L.

The effective bulk distortion (3) determines the effect of surface roughness on transport
via the Born collision integral

Lj = 2π

h̄

∑
j ′

∫ 〈∣∣Vjq,j ′q′ ∣∣2〉 [nj (1− n′j ′)− n′j ′(1− nj )] δ(εj (q)− ε′j ′(q′)) d2q ′

(2πh̄)2
(4)

in the transport equation for the subbandsj :

∂tn(εj , q)+ q

m
∂rn(εj , q)+ F ∂qn(εj , q) = Lj {ni} (5)

where subbandsεj (q) = [(πjh̄/L)2+ q2]/2m. The equation includes both in-band scatter-
ing and interband transitions. Since we are interested in the effects of slight roughness in
the lowest approximation, we do not have to include the roughness-induced corrections to
the energy levels, and can neglect all the roughness corrections to the l.h.s. of equation
(5). The collision integral (4) and, therefore, the transport coefficients contain the squares
of the matrix elements of the ‘perturbation’V̂ , and the averaging over the random surface
inhomogeneities leads directly to the correlation functionζ(s).

The calculation of the matrix elements〈|Vjq,j ′q′ |2〉 with the unperturbed wave functions
9j =

√
2/v0 exp(iq · s) sin(πjX/L) is trivial (v0 is the volume). The Hamiltonian (3)

contains terms withξ = ξ1 + ξ2 andξ1 − ξ2. Both terms contribute to the matrix elements
|Vjq,j ′q′ |2 and the collision integral (4). After the averaging and integration with theδ-
functions in (4), the term withξ1− ξ2 becomes equal to zero, as in [10]. This cancellation
occurs only because of the randomness of surface roughnessand the absence of bulk
collisions. In the case of regular roughness (i.e., periodic walls or channels of finite length)
or in the presence of particle–particle and particle–impurity bulk collisions, the contribution
of ξ1− ξ2 is finite. In our case of ballistic transport between random rough walls, the terms
with ξ1− ξ2 disappear from the collision integral (4):

Lj = 1

2πh̄3m2L2

∫
d2q ′ ζ(q − q′)

∑
j ′
(nj ′(q

′)− nj (q))δ(εj ′q′ − εjq)

×
[
δjj ′

(
1

4
(q − q′)2+

(
πh̄j

L

)2)2

+ (1− δjj ′)j
2j ′2

(j2− j ′2)2 (q ′2− q2)2

]
(6)

where ζ(q) = ζ11 + ζ22 + 2ζ12 is the Fourier component of the correlation function
〈ξ(s1)ξ(s2)〉 for ξ = ξ1+ ξ2 (see equation (1)).

The transport equations (5), (6) are a set of equations in the distribution functionsnj
coupled via collision integralsLj . We can solve the transport equations for an arbitrary
correlation functionζ(q) and express the transport coefficients via the zeroth and first
angular harmonics of the correlation function at different values ofq. We will supplement
the general expressions with the most practical example of the Gaussian correlations of the
surface inhomogeneities of an average height`:

ζ(s) = `2 exp(−s2/2R2) ζ(q) = 2π`2R2 exp(−q2R2/2h̄2) (7)

including theδ-type correlations in the limit of the small correlation radiusR:

ζ(s) = `2R2δ(s)/s ζ(q) = 2π`2R2. (8)
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The condition`� R does not mean that our approach is applicable only to the long-range
correlations (large-size inhomogeneities). The scale for the effective correlation range in
equation (7) is defined by the particle wavelengthλ ∼ 1/q. If λ � R, one deals with
the short-rangeδ-type correlations (8), while in the opposite case of long-range correlations
λ � R one should consider the full Gaussian expression (7). Only the large number of
equations (5) (relevant subbandsj ) prevents us from giving a fully analytical solution of
the transport problem.

3. Singularities in the transport of particles with discrete quantum states; low
temperatures

Changes in particle density and/or thickness of the film lead to the redistribution of particles
between subbands with differentj . This redistribution betweendiscretestates may lead to
a non-analytic dependence of transport coefficients on particle density and thickness of the
film [17]. This non-analyticity is more pronounced for degenerate Fermi systems atT → 0
when continuous increase in the number of particles leads, at certain critical densities, to
filling of new levels with higher and higher values ofj .

At T = 0, the Fermi momenta of fermions for the motion along the filmq(j)F in each
subbandj are given by the overall Fermi energyεF as

εF = 1

2m

((
πjh̄

L

)2

+ q(j)2F

)
(9)

while the 2D density of spin-1/2 particles in subbands

Nj = q
(j)2
F

2πh̄2 (10)

(for simplicity we assume that the effective masses of particles in all subbands are the
same). The chemical potentialµ = εF is determined self-consistently by calculating the
total density of particlesN ,

N =
∑
j

Nj = 1

2πh̄2

∑
j

(
2mεF −

(
πjh̄

L

)2)
. (11)

Equations (9)–(11) in convenient dimensionless notation

ν = 2mεF

(
L

πh̄

)2

zj = 2

π
NjL

2 z ≡
∑
j

zj = 2

π
NL2 (12)

can be rewritten as

zj = ν − j2 z =
∑

zj . (13)

The number of occupied levelsS for the given value ofz (i.e., for the number of particles
NL2) is given by the integer part ofν1/2(z):

S(z) = Int
[√
ν
]
. (14)

All of the levels with the indicesj > S are empty,zj>S = 0. Summation in equations
(13) from 1 toS defines the number of occupied levelsS and the dimensionless chemical
potentialν as functions of the number of particlesz:

S = Int
[√
ν
] = Int

[√
z

S
+ (S + 1)(2S + 1)

6

]

ν(z) = z

S
+ 1

6
(S + 1)(2S + 1).

(15)
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(For computational purposes, it is convenient to start from defining the number of occupied
levelsS, and to determine the interval of the values ofz andν, which corresponds to this
number of levels, on the basis of the value ofS.) The changes in the number of occupied
levelsS = 1, 2, 3, 4, 5, 6, . . . occur atz = 0, 3, 13, 34, 70, 125, . . . (i.e., at the points
z = S3− S(S + 1)(2S + 1)/6).

At T = 0, we look for the solution of the transport equation (5) in the form

nj (q) = n(0)j (q(j)F )− FL3

π4`2
δ(ε − εF )χj (q(j)F ) cosθj

where θj is the angle between the momentumqj and the external forceF . Then,
after the integration of the collision integral (6) with the Gaussian correlation of surface
inhomogeneities (7), the transport equation reduces to the following set ofS dimensionless
linear equations inχj (q

(j)

F ) with hypergeometric coefficients:

z
1/2
j L2

R2
= −1

2
χj

(
4j4

1F1

(
3

2
, 2,−2π2zjR

2

L2

)
+ 6zj j

2
1F1

(
5

2
, 3,−2π2zjR

2

L2

)
+ 5

2
z2
j 1F1

(
7

2
, 4,−2π2zjR

2

L2

))
+ 2

S(z)∑
j ′
(1− δjj ′)j2j ′2 exp

[−π2(
√
zj −√zj ′)2R2/2L2

]
×
[
χj ′

(
1F1

(
1

2
, 1,−2π2√zj zj ′R2

L2

)
− 1F1

(
3

2
, 2,−2π2√zj zj ′R2

L2

))

− χj 1F1

(
1

2
, 1, −2π2√zj zj ′R2

L2

)]
(16)

(We do not give cumbersome equations for the correlation function of a general formζ(q)
with the coefficients expressed via the angular harmonics of the correlation function on the
Fermi surface.) The conductivity (mobility) of particles is given by the solution of this set
of equations as

σyy = σzz =
S∑
j=1

σ (j)yy = −
e2L2

2π4h̄`2

S∑
j=1

z
1/2
j χj (q

(j)

F ) (17)

and can be conveniently parametrized in the form

σyy = σzz = e2L2

π4h̄`2
8

(
z,
R

L

)
z = 2

π
NL2. (18)

The dimensionless functions8(z,R/L) for four different values ofR/L are plotted in
figure 1 (solid line) forR/L = 0.05, and in figure 2 forR/L = 1, 3, 5. The singular points
correspond to change in values ofS from 1 to 2 to 3 to 4· · · at z = 3, 13, 34, . . ..

This representation gives the dependence of the conductivity (mobility) on the
dimensionless density of particlesNL2 for different (dimensionless) correlation radiiR/L.
Another possible way of parametrizing the equations, similar to the one used in [10], could
be based on the definition

2π2√zj zj ′R2

L2
= 4π

√
zj zj ′NR

2

z
= 8π2√zj zj ′

z

(
R

λ

)2

where the effective particle wavelengthλ2 = 2π/N . This equation redefines the
function 8(z, L/R) in (18) as8(1)(z, R/λ) = 8(z, 2R/λ

√
z) or as8(2)(z, R

√
N) =
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Figure 1. 8(z,R/L), equation (18), as a function of densityz = 2NL2/π for the correlation
radiusR/L = 0.05. Solid line: the exact calculation; dotted line: calculation without interband
transitions (without off-diagonal terms in the collision integral equation (6)).

0.1

1

10

102

103

104

105
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5

1

3

8(z, R
L
)

z

Figure 2. 8(z,R/L), equation (18), as a function of densityz = 2NL2/π for the correlation
radiusR/L = 1, 3, 5. The curves are labelled with the values ofR/L.

8(z,
√

2N/πzR). These alternative parametrizations would give the conductivity (mobility)
as a function of dimensionless thicknessL

√
N at different correlation radiiR

√
N or R/λ.

The z-dependences of the conductivity for all of these parametrizations look roughly the
same.
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The diffusion coefficientDyy = Dzz is related to the mobility(21) as follows:

Dyy = −πh̄
2

e2m
σyy

/ S∑
j=1

∫
∂nj

∂ε
dε = πh̄2σyy

e2mS
= L2h̄

π3m`2S
8

(
z,
R

L

)
(19)

while the mean free path along the channel is

L = σ 〈q〉
e2N

= (2π)1/2h̄σ

e2N3/2

(∑
N2
j

)1/2

∼ LLR
`2

L

R

8(z,R/L)

z
. (20)

The dramatic difference in shapes of the curves in figures 1 and 2 for small and large
values ofR/L is explained by the role of interlevel transitions. If one neglects the interband
transitions (the off-diagonal matrix elementsV̂jj ′ with j ′ 6= j ) in the collision integral (6),
then the set of transport equations (16) will decouple intoS independent equations. It is
obvious that in this approximation the conductivity should be an almost monotonic function
of z = 2NL2/π , though the critical values ofz, which correspond to the change in the
number of occupied levelsS, are still responsible for the singularities (small kinks) in the
curves. Therefore, the saw-like nature of the curves is caused by the interlevel transitions
exclusively.

For comparison, figure 1 (dotted line) and figure 3 give the function8(z) calculated
when all the interband off-diagonal termsj ′ 6= j in the collision integral (6) are artificially
disregarded. The curves with and without transitions always coincide as long asz 6 3
when there is only one occupied subband. The differences show up only atz > 3.

0.1

1

10

102

103

104

105

1 10 100

5

1

8(z, R
L
)

z

Figure 3. 8(z,R/L), equation (18), as a function ofz for R/L = 1, 5, calculated without
interlevel transitions (without off-diagonal terms in the collision integral (6)). The curves are
labelled with the values ofR/L.

Algebraically, the importance of interband transitions is characterized by the parameter
NR2 ∼ zR2/L2. Sincezj ′ − zj = j2− j ′2, the exponents in equations (16)

exp
[−π2(

√
zj −√zj ′)2R2/2L2

] ≡ exp

[
−π

(√
NjR2−

√
Nj ′R2

)2
]
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make interlevel transitions to remote levels
∣∣j − j ′∣∣ � L/R negligible. These exponents

show also that the interband transitions and the resulting mixing of adjacent levels are very
important only for not very highly populated levels with 2π2zjR

2/L2 � 1. Thus, the
contribution of interband transitions is noticeable only for relatively small values ofR/L,

and decreases exponentially with increasingR/L. For this reason, the saw-like character of
the particle mobility becomes less and less pronounced with increasingR/L. At R/L = 5
the saw nearly completely disappears, and there is practically no difference between the
curves in figure 2 (the exact calculation) and figure 3 (the calculation without interband
transitions). Note that the curves calculated with and without transitions always coincide
for a small number of particlesz < 3 when only one level is occupied and the transitions
are impossible for energy reasons.

The same parameters, 2π2zjR
2/L2 = 4πNjR2, determine the values of the hyper-

geometric functions in (16). Atx2 � 1, 1F1((2n − 1)/2, n,−x2) ' 1, while in the
opposite casex2 � 1, 1F1((2n − 1)/2, n,−x2) ' (n − 1)!/

√
πxn. Therefore, at large

2π2zjR
2/L2 � 1, one can not only neglect the interband transitions, but also neglect the

hypergeometric functions1F1((2n − 1)/2, n,−x2) with n = 3 andn = 4 in the diagonal
terms of the collision integrals (16) in comparison with the one withn = 2. Under these
conditions one can justify a heuristic assumption made in [10] and recover the result(53):

σyy =
S∑
j=1

σ (j)yy =
e2L2

π4h̄`2
8

(
z,
R

L

)

8

(
z,
R

L

)
= L2

4R2

S(z)∑
1

1

j4

zj

1F1(
3
2, 2,−2π2zjR2/L2)

.

(21)

If the correlation radius is small,NR2 � 1, all of the terms in(16) are of the same
order, while the hypergeometric function

1F1((2n− 1)/2, n,−2π2zjR
2/L2) ∼ 1F1((2n− 1)/2, n,0) = 1.

Then equations (16) can be simplified as

z
1/2
j L2

R2
= −1

2
χj

(
4j4+ 6zj j

2+ 5

2
z2
j

)
− 2χj

S(z)∑
j ′
(1− δjj ′)j2j ′2. (22)

In this case

8

(
z,
R

L

)
= L2

4R2

S(z)∑
j=1

ν(z)− j2

(j4+ 3zj j2/2+ 5z2
j /8)+ S(S + 1)(2S + 1)/6− j2

. (23)

In the opposite limit whenzjR2/L2� 1 for all j , the interlevel transitions and higher-order
hypergeometric functions can be neglected,1F1(

3
2, 2,−x2)→ 1/

√
πx3, and

8

(
z,
R

L

)
= π7/2R

21/2L

S(z)∑
j=1

(ν(z)− j2)5/2

j4
. (24)

Note that the accuracy of equation (24) for largeNR2 can be improved near the
critical values ofz which correspond to changes in the number of occupied levelsS.
With the appearance of a new levelS, the number of particles on this level,zS , and,
therefore, zSR2/L2 are small even for largeR/L, and the contribution of this level
is zS/1F1(

3
2, 2,−2π2zsR

2/L2) ∼ zS , and not zSπ1/2(2π2zSR
2/L2)3/2 as is implied by

equation (24). Away from the critical density the hypergeometric function becomes small,
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2π2zSR
2/L2� 1, and the contribution of this highest level will recover the form indicated

by (24).
The argument of the exponents and hypergeometric functions can be also written as

the ratio of the particle wavelength to the correlation radius of surface inhomogeneities,
2π2zjR

2/L2 ∼ (R/λj )2. The particle wavelength serves as a natural scale for describing
the correlations, and separates long-range from short-range correlations. In this sense, the
interband transitions are more important for the short-range correlations.

4. Transport along films and channels; high temperatures

At finite temperatures, all of the levels with differentj are populated, and the transport
equation is an infinite set of coupled equations (5). The chemical potential is the same for
particles in all bands,

µ(N, T ) = 1

2m

(
πjh̄

L

)2

+ µj(Nj , T ) εj (q) = 1

2m

((
πjh̄

L

)2

+ q2

)
(25)

whereµj is the chemical potential of a 2D system ofNj fermions in the bandj . If we are
dealing with a dilute gas, thenµj depends only on the number of particleszj = 2NjL2/π

in this band:

zj = ϑT ln

(
1+ exp

(
µj

T

))
= ϑT ln

(
1+ exp

(
µ

T
− j2

ϑT

))
(26a)

and

µj = T ln

(
exp

(
zj

ϑT

)
− 1

)
(26b)

where

ϑT = 2mTL2

π2h̄2

describes the ratio of the temperature to the energy of zero-point oscillations in the well of
the widthL. This equation should be used to express the chemical potential via the total
number of particlesz = 2NL2/π :

z = ϑT
∞∑
j=1

ln

[
exp

(
µ

T
− j2

ϑT

)
+ 1

]
. (27)

The solution of this equation,µ(z) at T = 0, is given by equation (15).
We will give the transport coefficients for high-temperature systems of particles with

the Boltzmann distribution function when

z = ϑT exp

(
µ

T

)
2 µ = T ln

(
z

ϑT2

)
2(ϑT ) ≡

∞∑
j=1

exp

(
− j

2

ϑT

)
.

The transport equation (5) in dimensionless variablesχj (q),

nj (q) = n(0)j (q)
(

1− FL3

π4T `2
χj (q) cosθ

)
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assumes the form

u1/2 = 1

2π2L2`2

{
χj (q)

[
1

4
u2(η1(u, ujj )− η0(u, ujj ))

+ uj2(γ1(u, ujj )− γ0(u, ujj ))+ j4(ζ1(u, ujj )− ζ0(u, ujj ))

]
+

S(u,j)∑
j ′ 6=j

j2j ′2[χj ′ζ1(u, ujj ′)− χjζ0(u, ujj ′)]

}
(28)

while the mobility (conductivity) is

σyy = σzz =
∞∑
j=1

σ (j)yy = −
e2L2

2π4h̄`2

z

ϑ2
T 2

∞∑
j=1

exp

(
− j

2

ϑT

)∫
u1/2χj (q) exp

[
− u

ϑT

]
du.

(29)

Here

u = q2

(
L

πh̄

)2

S(u, j) = Int
[
(u+ j2)1/2

]
ujj ′ = u+ j2− j ′2 = q ′2

(
L

πh̄

)2

andζ0,1(u, ujj ), η0,1(u, ujj ), andγ0,1(u, ujj ) are the zeroth and first angular Fourier harm-
onics of the functions

ζ(q − q′) = ζ(q2+ q ′2− 2qq ′ cosϕ) = ζ(u, ujj , cosϕ)

η(q − q′) = ζ(q − q′) [1− cosϕ]2 γ (q − q′) = ζ(q − q′) [1− cosϕ]
(30)

over the angleϕ between the vectorsq and q′. In essence, the variableu = (qL/πh̄)2

plays the same role as the Fermi momentazj = (q(j)F L/πh̄)2 for degenerate systems in the
previous section.

In the Gaussian case (7), integration in (28) leads to the same set of equations(16) with
the only difference thatu should be substituted forzi . The situation is again non-analytic
since the summation in (30) for off-diagonal transitions overj ′ should be performed up to the
valueS(u, j) which is not only different for eachj , i.e., for each equation, but also depends
on momentumq and exhibits step-like jumps at certain values ofu = q2(L/πh̄)2. However,
this non-analyticity manifests itself more noticeably in the integrands (29) rather than in
the transport coefficients themselves which are fairly smooth. Finally, the conductivity
(mobility) is equal to

σyy =
∞∑
j=1

σ (j)yy =
e2NL4

π5h̄`2
5

(
ϑT ,

R

L

)

5(x, y) = 1

x22(x)y2

∞∑
j=1

∫
χj (u) exp

(
−j

2+ u2

x

)
du.

(31)

The function5(x, y) is plotted in figure 4 fory = R/L = 0.05 and in figure 5 for
y = R/L = 0.5, 1.

In the Boltzmann temperature range, the diffusion coefficient can be expressed via
mobility as

Dyy,zz = −πh̄
2

e2m
σyy

/∑
j

∫
∂nj

∂ε
dε = T σyy

e2N
= T L4

π5h̄`2
5

(
ϑT ,

R

L

)
(32)
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Figure 4. The function5(x, y), equation (31), fory = R/L = 0.05.
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Figure 5. The function5(x, y), equation (31), fory = R/L = 0.5 (solid line) and 1 (dotted
line).

while the mean free path

L = σ 〈q〉/e2N = (mT )1/2L4

π5h̄`2
5

(
ϑT ,

R

L

)
. (33)

The difference between the functions5(x) in figures 4, 5 of several orders of magnitude
is not surprising. Sincex = ϑT ∼ (L/λ)2 (λ is the particle wavelength), figure 4 is plotted
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in the regionL ∼ λ. On the other hand,y = R/L = 0.05 is rather small, as a result of
which R/λ � 1. As was explained in [10] (and is confirmed by the present calculation),
the conditionR/λ� 1 corresponds to a nearly specular quantum reflection, and, therefore,
to large particle mean free paths—thus the large values of5(x) in figure 4. In figure 5,
y = R/L ∼ R/λ ∼ 1. This case corresponds to the most effective scattering of particles
by surface inhomogeneities and to the smallest values of the mean free path.

5. Summary and discussion

In summary, we calculated mobility and diffusion coefficients for ballistic particles in ultra-
thin films with random rough boundaries for the case where the motion of particles across
the film is quantized. We obtained simple and explicit expressions for transport coefficients
via the correlation function of surface inhomogeneities, the particle densityN , and the
film thicknessL. The particle transport along the film is a non-trivial function of two
dimensionless parameters,NL2 and R/L, whereR is the correlation radius of surface
inhomogeneities. The most important consequence of a discrete character of the particle
spectrum for the motion across the film is the non-analytic low-temperature dependence
of the transport coefficients on the film thickness and the density of particles with the
singularities at the critical values ofNL2.

The strengths of these singularities strongly depend on the correlation radius of surface
inhomogeneitiesR. In the case of short-range correlations of surface inhomogeneities, the
low-temperature dependence of transport coefficients on particle density and film thickness
has a pronounced saw-like structure. The saw teeth become smaller, and the saw-like
structure gradually disappears with increasing correlation radius. Finally, for long-range
correlations one gets not very well pronounced kinks, instead of the saw teeth, at the
critical values of density and/or thickness at which the number of occupied levels changes
by one.

Though both the amplitude and the correlation radius of surface inhomogeneities affect
the particle scattering by the walls, the dependence of transport coefficients on the amplitude
of the surface inhomogeneities̀, in contrast to their dependence on the correlation radius
R, is quite trivial, and reduces to a multiplicative factor 1/`2.

In general, the non-analytic nature of the curves is explained by the singularities in
the (low-temperature) distribution of fermions over a system of discrete energy subbands.
However, the sharp discontinuities on the saw-like curves for transport coefficients are
caused not by the singularities in the density of state, but mostly by the interband transitions
caused by the scattering from wall inhomogeneities.

The occupation of a new, higher-energy subband leads to two transport effects: to the
direct transport contribution of the particles from this new band, and to the opening of new
scattering channels for particles in all already occupied bands (interband transitions to and
from the new band). The first effect is proportional to the number of particles in the new
band and is small. For this reason the singularity of the transport coefficients reduces, in the
absence of interband transitions, to a series of kinks corresponding to the occupancy of the
higher bands. On the other hand, the opening of new scattering channels with the interband
transitions to and from newly occupied bands affects particles fromall already occupied
bands, thus increasing dramatically the total effective scattering cross-section in a step-like
manner. If one artificially freezes these transitions, the transport curves will exhibit kinks
rather than the saw teeth.

Not surprisingly, the contribution of interband transitions depends exponentially on the
ratio of the particle wavelength to the correlation radius of the surface inhomogeneities,
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and decreases rapidly with increasing correlation radius of surface roughness (i.e., with the
flattening of surface inhomogeneities). The emerging picture is more complicated than that
described in [17, 29, 15] because, unlike bulk impurities, surface inhomogeneities can have
a relatively large correlation length.

The parametrization of transport parameters in this paper is slightly different from that
in [10]. In the case of the mean free path it is probably better to use, instead of (20), (33),
the parametrization in the form [10]

L ∼L
2R

`2
f (R/λ)

with the minimum atR ∼ λ. The transformation of the results to this form is fairly
straightforward in both the degenerate and Boltzmann regions. As usual, the information
on the mean free path allows one to calculate quantum interference corrections and to
determine the localization length.
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Appendix. Classical and semiclassical motion across the channels

In the classical limit, when the distance between the bands with differentj becomes
negligible, the above results should coincide with the results of the classical calculations in
[10]. The transition to the classical limit corresponds to thick films or to the states with
large quantum numbers,j � 1, when the interlevel transitions are accompanied by relatively
small changes of the quantum number, 1∼ δj � j . The coordinate transformation (1) and
the effective Hamiltonian (3) are, obviously, the same in the classical and quantum cases.
The matrix elements of the effective bulk distortion (3) are

Vqj,q′j ′ = ξ(q − q′)
mL

[
δjj ′

(
π2j2

L2
+ 1

4
(q2− q ′2)

)
+ 1

2
((−1)j+j

′ + 1)
(1− δjj ′)jj ′
j2− j ′2 (q2− q ′2)

]
. (A1)

In the quasiclassical (continuous) limit we should substitutepx andp′x for jh̄/L andj ′h̄/L,
and assume thatj, j ′ � 1 . Then the matrix elements (A1) coincide exactly with the
classical matrix elements in [10] with theδjj ′ -terms giving rise toδ(px−p′x), and the terms
with (1− δjj ′)/(j − j ′) giving rise toδ′(px − p′x).

The collision integral (4) contains the squares of the matrix elementsVqj,q′j ′ . The
calculation of〈|Vqj,q′j ′ |2〉 for the quantum matrix elements (A1) is trivial sinceδ2

jj ′ = δjj ′ ,
(1− δjj ′)2 = 1− δjj ′ , and δjj ′(1− δjj ′) = 0. However, a calculation of the squares of
the classical matrix elements in the continuous limit, as in reference [10], involves the use
of not very well defined squares of theδ-functions δ(px − p′x) and δ′(px − p′x). In our
calculation [10] we used the following approximation for such a product of theδ-functions:

δ′(px − p′x)δ(px − p′x) = −
1

2

[
δ2(px − p′x)

]′ ' − L
2h̄
δ′(px − p′x). (A2)

An unambiguous calculation procedure requires the transition to the classical expressions
only after the quantum calculation of〈|Vqj,q′j ′ |2〉 when the problem with the squares of the
δ-functions does not arise (an alternative is the use of the bell-shaped functions instead of
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Figure A1. The functionfB(x); solid line: equation (A4); dotted line: the result from reference
[10].

δ-functions, e.g., in the presence of dissipation; this option is more complicated). The use
of the quantum expression for〈|Vqj,q′j ′ |2〉 on the basis of equation (A1) with the consequent
transition to the quasiclassical limit shows that the exact expression for the above product
of the δ-functions (A2) has the form

δ′(px − p′x)δ(px − p′x) = −δ′(px − p′x)/2px.
This leads to a more accurate classical analogue of the transition probability:

W(p,p′) = 2π

h̄

〈∣∣Vjq,j ′q′ ∣∣2〉
= ζ(q − q′)

4πL2m2
δ(ε − ε′)

[
2p4

xδ(px − p′x)+
�2

4
δ′′(px − p′x)

]
�(p,p′) = (q − q′) · (pxq + p′xq′)

(A3)

than equation(18) of [10].
The corresponding change in the classical collision integral does not result in any

significant changes in the expressions for the classical transport coefficients. Theonly
improvement should be the substitution for the functions

d sinθ

α + 4 tan4 θ

in the integrands for all transport coefficients in reference [10] with

d sinθ

α + 4β tan4 θ + 8 tan4 θ

where

α(u) = (5/2)1F1(7/2, 4,−u2)/1F1(3/2, 2,−u2)

β(u) = (3/2)1F1(5/2, 3,−u2)/1F1(3/2, 2,−u2).
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Figure A2. The functionfF (x); solid line: equation (A5); dotted line: the result from reference
[10].

This change in the analytical expressions leads to more accurate results. However, the
numerical change is not very significant. This small numerical change is illustrated in figures
A1 and A2 for the functionsfB(x) andfF (x) which describe the transport coefficients and
the mean free path [10] for Boltzmann and Fermi gases:

σ = 32

π3/2

e2L2R2N

h̄`2
xfB(x) x = h̄

(4mT )1/2R

fB(x) = x4
∫

exp
[−x2z2/ cos2 θ

]
1F1(3/2, 2,−z2)

dz

cos2 θ

dθ

α + 4β tan4 θ + 8 tan4 θ
(A4)

and

σ =
√

2

π3

e2L2

h̄`2R
x2fF (x) x =

√
2pFR/h̄

fB(x) = 1

x3

∫
1

1F1(3/2, 2,−x2 cos2 θ)

1

cos2 θ

d sinθ

α + 4β tan4 θ + 8 tan4 θ
. (A5)
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